Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
We have implemented GPU-aware support across all AWP-ODC versions and enhanced message-passing collective communications for this memory-bound finite-difference solver. This provides cutting-edge communication support for production simulations on leadership-class computing facilities, including OLCF Frontier and TACC Vista. We achieved significant performance gains, reaching 37 sustained Petaflop/s and reducing time-to-solution by 17.2% using the GPU-aware feature on 8,192 Frontier nodes, or 65,336 MI250X GCDs. The AWP-ODC code has also been optimized for TACC Vista, an Arm-based NVIDIA GH200 Grace Hopper Superchip, demonstrating excellent application performance. This poster will showcase studies and GPU performance characteristics. We will discuss our verification of GPU-aware development and the use of high-performance MVAPICH libraries, including on-the-fly compression, on modern GPU clusters.more » « lessFree, publicly-accessible full text available September 10, 2026
-
We have ported and verified the topography version of AWP-ODC, with discontinuous mesh feature enabled, to HIP so that it runs on AMD MI250X GPUs. 103.3% parallel efficiency was benchmarked on Frontier between 8 and 4,096 nodes or up to 32,768 GCDs. Frontier is a two exaflop/s computing system based on the AMD Radeon Instinct GPUs and EPYC CPUs, a Leadership Computing Facility at Oak Ridge National Laboratory (ORNL). This HIP topography code has been used in the production runs on Frontier, a primary computing engine currently utilizing the 2024 SCEC INCITE allocation, a 700K node-hours supercomputing time award. Furthermore, we implemented ROCm-Aware GPU direct support in the topo code, and demonstrated 14% additional reduction in time-to-solution up to 4,096 nodes. The AWP-ODC-Topo code is also tuned on TACC Vista, an Arm-based NVIDIA GH200 Grace Hopper Superchip, with excellent performance demonstrated. This poster will demonstrate the studies of weak scaling and the performance characteristics on GPUs. We discuss the efforts of verifying the ROCm-Aware development, and utilizing high-performance MVAPICH libraries with the on-the-fly compression on modern GPU clusters.more » « less
-
AWP-ODC is a 4th-order finite difference code used by the SCEC community for linear wave propagation, Iwan-type nonlinear dynamic rupture and wave propagation, and Strain Green Tensor simulation. We have ported and verified the CUDA-version of AWP-ODC-SGT, a reciprocal version used in the SCEC CyberShake project, to HIP so that it can also run on AMD GPUs. This code achieved sustained 32.6 Petaflop/s performance and 95.6% parallel efficiency at full scale on Frontier, a Leadership Computing Facility at Oak Ridge National Laboratory. The readiness of this community software on AMD Radeon Instinct GPUs and EPYC CPUs allows SCEC to take advantage of exascale systems to produce more realistic ground motions and accurate seismic hazard products. We have also deployed AWP-ODC to Azure to leverage the array of tools and services that Azure provides for tightly coupled HPC simulation on commercial cloud. We collaborated with Internet 2/Azure Accelerator supporting team, as part of Microsoft Internet2/Azure Accelerator for Research Fall 2022 Program, with Azure credits awarded through Cloudbank, an NSF-funded initiative. We demonstrate the AWP performance with a benchmark of ground motion simulation on various GPU based cloud instances, and a comparison of the cloud solution to on-premises bare-metal systems. AWP-ODC currently achieves excellent speedup and efficiency on CPU and GPU architectures. The Iwan-type dynamic rupture and wave propagation solver faces significant challenges, however, due to the increased computational workload with the number of yield surfaces chosen. Compared to linear solution, the Iwan model adds 10x-30x more computational time plus 5x-13x more memory consumption that require substantial code changes to obtain excellent performance. Supported by NSF’s Characteristic Science Applications (CSA) program for the Leadership-Class Computing Facility (LCCF) at Texas Advanced Computing Center (TACC), we are porting and improving the performance of this nonlinear AWP-ODC software, preparing for the next generation NSF LCCF system called Horizon, to be installed at TACC. During Texascale days on the current TACC’s Frontera, we carried out an Iwan-type nonlinear dynamic rupture and wave propagation simulation of a Mw7.8 scenario earthquake on the southern San Andreas fault. This simulation modeled 83 seconds of rupture with a grid spacing of 25 m to resolve frequencies up to 4 Hz with a minimum shear-wave velocity of 500 m/s.more » « less
An official website of the United States government

Full Text Available